In the crossplane design, opposing cylinders in the V8 attach at all four points of the compass. In the flatplane design, they attach to two-points of the compass, each repeated once.
The pistons attach as shown below for the 90 degree V8 configuration.
Thus the point of having multiple cylinders and clever crankshaft designs is to make all of these shakes cancel out, leaving a silky smooth engine with no vibrations at all.
In the flatplane design, for every piston moving down there is an opposing piston moving up to cancel the vibrations. As well, this is symmetrical about the middle of the crankshaft, so neither is there any net torque on the crank.
However, this is not true of the crossplane V8. While the ups and down all cancel each other out, there is a net back and forth rotation about the middle of the crankshaft.
So if they are both the same, but the crossplane is heavier, why ever use the crossplane? The answer is that while neither arrangement has any first-order imbalance, the flatplane has a second order imbalance, whereas the crossplane does not. I'll now explain where this second-order imbalance comes from.
How the up-and-down location of the piston head (at P) relates to the crank angle A from TDC (Top Dead Centre) is actually quite complex, and is given by the formula above, solving for quantity x (l and r are constants of the engine).
One implication of the formula is that the way the piston moves with the crank angle is slightly different at the top of the motion than at the bottom.
In the graph above, looking at the blue plot, I am plotting the piston position in inches around the midpoint of its motion. Notice the shape of the top hump is considerably broader than the shape of the bottom one. To make this clearer, the red plot is the blue one 180 degrees back and flipped over so you can directly compare peak to trough. The green line plots the difference between the red and blue plots. If they overlaid perfectly, it would be flat. It is clearly not flat, and this is where second-order imbalance comes from.
Another way of looking at the red and blue plots above is that I am plotting the position of the two pistons whose motion is opposing one another. This is made clearer by flipping over one of the lines.
The flatplane V8 has no first-order imbalance, but it does have a second order imbalance that cannot be practically corrected. This is why flat-plane designs can only be used with small light V8 engines found in some sportscars with smaller displacements, shorter strokes, and lighter piston heads and rods (such as F1 racing cars, Ferrari V8s, and the Lotus Esprit V8).
Even given the lightweight engine construction, they will tend to shake you up a bit, but folks say they enjoy it!
With the crossplane design, the second order imbalances actually cancel each other out completely, so it runs a lot smoother as a result, even in larger and heavier engines (such as the M5's relative to those other sportscars). This property of the crossplane crankshaft was only discovered in the 1920's (by Cadillac and Peerless at the same time - they share the patent), and before then all V8s were flatplane, and shook!
Other than the extra weights, there is another problem with the crossplane relative to the flatplane, and that is the piston firing order.
With the crossplane design, the second order imbalances actually cancel each other out completely, so it runs a lot smoother as a result, even in larger and heavier engines (such as the M5's relative to those other sportscars). This property of the crossplane crankshaft was only discovered in the 1920's (by Cadillac and Peerless at the same time - they share the patent), and before then all V8s were flatplane, and shook!
Other than the extra weights, there is another problem with the crossplane relative to the flatplane, and that is the piston firing order.
The ideal firing order for any "V" engine is to alternate cylinders firing on first one bank and then the other. This would spread out the heat and smooth out the exhaust pulses which leads to better exhaust flow. The flatplane firing order is like this. Very predictable right bank, left bank, right bank, and so on.
However the crossplane V8 does not have the ideal firing order. There must always be a cylinder fired on the same side at least twice, once per bank, and at least once in the firing order adjacent cylinders will fire in sequence, which leads to excess heat issues on the wall between those adjacent cylinder that must be designed around with extra cooling. The numbering and firing order (in brackets) for the cylinders in the M5 is as follows.
(3)4--------8(4)
(6)3--------7(7)
(8)2--------6(5)
(1)1--------5(2)
FRONT
There are therefore heat issues in the wall between cylinders 1 and 2, and both 1,2 and 8,6 are on the same side leading to uneven exhaust pulses. With the crossplane design this is completely unavoidable.
This firing order also gives a V8 its distinctive "burbling" sound owing to the uneven exhaust pulses coming from the right and left cylinder banks each of which is typically fed through to its own tail pipe: ti-ta-tii-ta-ti-taa. Other than the sound, this leads to a slowdown in the exhaust which backs things up and robs power and fuel efficiency.
The S63 engine, however, uses a cross-bank exhaust manifold that take exhaust pulses from both cylinders banks and feeds them to the turbos, and then out the exhaust for a very smooth exhaust flow.
While the crossing over of cylinder banks to exhausts is not unheard of, it requires a complex exhaust manifold, as the exhaust valves are typically on the outside of the V, and crossing them over early is a messy business. Some of the problem can be alleviated with an H or X exhaust that crosses the two exhaust banks over half-way to the tailpipes. This alleviates some of the problem but is still not ideal.
In the S63 engine, the exhaust valves are flipped to the inside of the V, and all exhaust directed to the turbos. The exhaust pulses are crossed over right inside the V before they hit the turbos, all in the space of a foot or so, and the smoothed exhaust outputs of the turbos can each go to its own tail pipe.
So in the M5 you do not hear the V8 rumble nearly as much as a result of this clever design, and it solves all the efficiency problems associated with the crossplane V8 exhaust.
However the crossplane V8 does not have the ideal firing order. There must always be a cylinder fired on the same side at least twice, once per bank, and at least once in the firing order adjacent cylinders will fire in sequence, which leads to excess heat issues on the wall between those adjacent cylinder that must be designed around with extra cooling. The numbering and firing order (in brackets) for the cylinders in the M5 is as follows.
(3)4--------8(4)
(6)3--------7(7)
(8)2--------6(5)
(1)1--------5(2)
FRONT
There are therefore heat issues in the wall between cylinders 1 and 2, and both 1,2 and 8,6 are on the same side leading to uneven exhaust pulses. With the crossplane design this is completely unavoidable.
This firing order also gives a V8 its distinctive "burbling" sound owing to the uneven exhaust pulses coming from the right and left cylinder banks each of which is typically fed through to its own tail pipe: ti-ta-tii-ta-ti-taa. Other than the sound, this leads to a slowdown in the exhaust which backs things up and robs power and fuel efficiency.
The S63 engine, however, uses a cross-bank exhaust manifold that take exhaust pulses from both cylinders banks and feeds them to the turbos, and then out the exhaust for a very smooth exhaust flow.
While the crossing over of cylinder banks to exhausts is not unheard of, it requires a complex exhaust manifold, as the exhaust valves are typically on the outside of the V, and crossing them over early is a messy business. Some of the problem can be alleviated with an H or X exhaust that crosses the two exhaust banks over half-way to the tailpipes. This alleviates some of the problem but is still not ideal.
In the S63 engine, the exhaust valves are flipped to the inside of the V, and all exhaust directed to the turbos. The exhaust pulses are crossed over right inside the V before they hit the turbos, all in the space of a foot or so, and the smoothed exhaust outputs of the turbos can each go to its own tail pipe.
So in the M5 you do not hear the V8 rumble nearly as much as a result of this clever design, and it solves all the efficiency problems associated with the crossplane V8 exhaust.
Great explanation of cross-plane vs. flap-plane in a V8 engine. What makes this explanation great is the mathematical explanation combined with that of visual, making complete logical sense. People seldom combine both when explaining.
ReplyDeleteI have always been a fan of a straight-six engine due to its first-order and second-order balances & the awesome sound (BMW N55, S55, B58, S58); but not a fan of any V8s, except the S63 in the M5. That is the only V8 which makes a good sound, IMO. I knew the Hot-Vee layout is a contributor, but did not know the exhaust layout too.
Nicely put together...